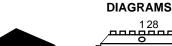
5V ECL Low Voltage 2:8 Differential Fanout Buffer

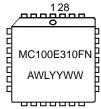
The MC100E310 is a low voltage, low skew 2:8 differential ECL fanout buffer designed with clock distribution in mind. The device features fully differential clock paths to minimize both device and system skew. The E310 offers two selectable clock inputs to allow for redundant or test clocks to be incorporated into the system clock trees.

The lowest tpd delay time results from terminating only one output pair, and the greatest tpd delay time results from terminating all the output pairs. This shift is about 10–20 pS in tpd. The skew between any two output pairs within a device is typically about 25 nS. If other output pairs are not terminated, the lowest tpd delay time results from both output pairs and the skew is typically 25 nS. When all outputs are terminated, the greatest tpd (delay time) occurs and all outputs display about the same 10–20 pS increase in tpd, so the relative skew between any two output pairs remains about 25 nS.

For more information on using PECL, designers should refer to ON Semiconductor Application Note AN1406/D.


The V_{BB} pin, an internally generated voltage supply, is available to this device only. For single-ended input conditions, the unused differential input is connected to V_{BB} as a switching reference voltage. V_{BB} may also rebias AC coupled inputs. When used, decouple V_{BB} and V_{CC} via a 0.01 μF capacitor and limit current sourcing or sinking to 0.5 mA. When not used, V_{BB} should be left open.

- Dual Differential Fanout Buffers
- 200 ps Part-to-Part Skew
- 50 ps Output-to-Output Skew
- 28-lead PLCC Packaging
- The 100 Series Contains Temperature Compensation
- PECL Mode Operating Range: V_{CC}= 4.2 V to 5.7 V with V_{EE}= 0 V
- NECL Mode Operating Range: V_{CC}= 0 V with V_{EE}= -4.2 V to -5.7 V
- Internal Input Pulldown Resistors
- Q Output will Default LOW with Inputs Open or at VEE
- ESD Protection: >2KV HBM, >200V MM
- Meets or Exceeds JEDEC Spec EIA/JESD78 IC Latchup Test
- Moisture Sensitivity Level 1
 For Additional Information, see Application Note AND8003/D
- Flammability Rating: UL-94 code V-0 @ 1/8", Oxygen Index 28 to 34
- Transistor Count = 212 devices



ON Semiconductor®

http://onsemi.com

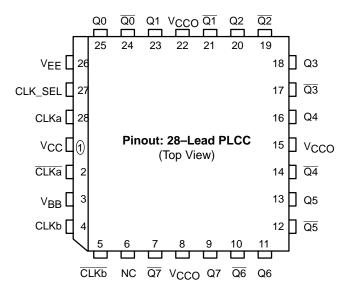
MARKING

PLCC-28 FN SUFFIX CASE 776

A = Assembly Location

WL = Wafer Lot

YY = Year


WW = Work Week

ORDERING INFORMATION

Device	Package	Shipping				
MC100E310FN	PLCC-28	37 Units/Rail				
MC100E310FNR2	PLCC-28	500 Units/Reel				

1

LOGIC DIAGRAM AND PINOUT ASSIGNMENT

Q0 Q0 Q1 Q1 Q2 Q2 CLKa Q3 CLKa Q3 CLKb Q4 CLKb Q4 Q5 CLK_SEL · Q5 Q6 Q6 Q7

V_{BB} -

LOGIC SYMBOL

 * All VCC and VCCO pins are tied together on the die.

Warning: All V_{CC}, V_{CCO}, and V_{EE} pins must be externally connected to Power Supply to guarantee proper operation.

PIN DESCRIPTION

PIN	FUNCTION
CLKa, CLKb;	ECL Differential Input Pairs
CLKa, CLKb	ECL Differential Input Pairs
Q0:7; Q 0: 7	ECL Differential Outputs
CLK_SEL	ECL Input Clock Select
V _{BB}	Reference Voltage Output
Vcc, Vcco	Positive Supply
VEE	Negative Supply
NC	No Connect

FUNCTION TABLE

CLK_SEL	Input Clock
0	CLKa Selected
1	CLKb Selected

MAXIMUM RATINGS (Note 1)

Symbol	Parameter	Condition 1	Condition 2	Rating	Units
VCC	PECL Mode Power Supply	VEE = 0 V		8	V
VEE	NECL Mode Power Supply	VCC = 0 V		-8	V
VI	PECL Mode Input Voltage NECL Mode Input Voltage	VEE = 0 V	$V_I \le V_{CC}$ $V_I \ge V_{EE}$	6 -6	V V
l _{out}	Output Current	Continuous Surge		50 100	mA mA
I _{BB}	V _{BB} Sink/Source			± 0.5	mA
TA	Operating Temperature Range			0 to +85	°C
T _{stg}	Storage Temperature Range			-65 to +150	°C
θJA	Thermal Resistance (Junction to Ambient)	0 LFPM 500 LFPM	28 PLCC 28 PLCC	63.5 43.5	°C/W
θЈС	Thermal Resistance (Junction to Case)	std bd	28 PLCC	22 to 26	°C/W
VEE	PECL Operating Range NECL Operating Range			4.2 to 5.7 -5.7 to -4.2	V V
T _{sol}	Wave Solder	<2 to 3 sec @ 248°C		265	°C

^{1.} Maximum Ratings are those values beyond which device damage may occur.

100E SERIES PECL DC CHARACTERISTICS V_{CCx} = 5.0 V; V_{EE} = 0.0 V (Note 1)

			–40°C			25°C			85°C		
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
IEE	Power Supply Current		55	60		55	60		65	70	mA
Vон	Output HIGH Voltage (Note 2)	3915	3995	4120	3975	4050	4120	3975	4050	4120	mV
VOL	Output LOW Voltage (Note 2)	3170	3305	3445	3190	3255	3380	3190	3260	3380	mV
VIH	Input HIGH Voltage (Single Ended)	3835	4050	4120	3835	4120	4120	3835	4120	4120	mV
V _{IL}	Input LOW Voltage (Single Ended)	3190	3300	3525	3190	3525	3525	3190	3525	3525	mV
V _{BB}	Output Voltage Reference	3.62		3.74	3.62		3.74	3.62		3.74	V
VIHCMR	Input HIGH Voltage Common Mode Range (Differential) (Note 3)	2.7		4.6	2.7		4.6	2.7		4.6	V
I _{IH}	Input HIGH Current			150			150			150	μΑ
Ι _Ι L	Input LOW Current	0.5	0.3		0.5	0.25		0.5	0.2		μΑ

NOTE: Devices are designed to meet the DC specifications shown in the above table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 lfpm is maintained.

1. Input and output parameters vary 1:1 with V_{CC}. V_{EE} can vary +0.46 V / -0.8 V.

2. Outputs are terminated through a 50 ohm resistor to V_{CC}-2 volts.

3. V_{IHCMR} min varies 1:1 with V_{EE}, max varies 1:1 with V_{CC}.

100E SERIES NECL DC CHARACTERISTICS V_{CCX} = 0.0 V; V_{EE} = -5.0 V (Note 1)

			0°C			25°C			85°C		
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
IEE	Power Supply Current		55	60		55	60		65	70	mA
Vон	Output HIGH Voltage (Note 2)	-1085	-1005	-880	-1025	-950	-880	-1025	-950	-880	mV
VOL	Output LOW Voltage (Note 2)	-1830	-1695	-1555	-1810	-1745	-1620	-1810	-1740	-1620	mV
VIH	Input HIGH Voltage (Single Ended)	-1165	-950	-880	-1165	-880	-880	-1165	-880	-880	mV
V _{IL}	Input LOW Voltage (Single Ended)	-1810	-1700	-1475	-1810	-1475	-1475	-1810	-1475	-1475	mV
V_{BB}	Output Voltage Reference	-1.38		-1.26	-1.38		-1.26	-1.38		-1.26	V
VIHCMR	Input HIGH Voltage Common Mode Range (Differential) (Note 3)	-2.3		-0.4	-2.3		-0.4	-2.3		-0.4	V
liH	Input HIGH Current			150			150			150	μΑ
IJĽ	Input LOW Current	0.5	0.3		0.5	0.25		0.5	0.2		μΑ

NOTE: Devices are designed to meet the DC specifications shown in the above table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 lfpm is maintained.

1. Input and output parameters vary 1:1 with V_{CC}. V_{EE} can vary +0.46 V / -0.8 V.

2. Outputs are terminated through a 50 ohm resistor to V_{CC}-2 volts.

3. V_{IHCMR} min varies 1:1 with V_{EE}, max varies 1:1 with V_{CC}.

MC100E310 ECL DC CHARACTERISTICS

			-40°C			0°C			25°C			85°C		
Symbol	Characteristic	Min	Тур	Max	Unit									
VOH	Output HIGH Voltage	-1.085	-1.005	-0.880	-1.025	-0.955	-0.880	-1.025	-0.955	-0.880	-1.025	-0.955	-0.880	V
V _{OL}	Output LOW Voltage	-1.830	-1.695	-1.555	-1.810	-1.705	-1.620	-1.810	-1.705	-1.620	-1.810	-1.705	-1.620	V
VIH	Input HIGH Voltage	-1.165		-0.880	-1.165		-0.880	-1.165		-0.880	-1.165		-0.880	V
V _{IL}	Input LOW Voltage	-1.810		-1.475	-1.810		-1.475	-1.810		-1.475	-1.810		-1.475	V
V _{BB}	Output Reference Voltage	-1.38		-1.26	-1.38		-1.26	-1.38		-1.26	-1.38		-1.26	V
VEE	Power Supply Voltage	-5.25		-4.2	-5.25		-4.2	-5.25		-4.2	-5.25		-4.2	V
Iн	Input HIGH Current			150			150			150			150	μΑ
IEE	Power Supply Current		55	60		55	60		55	60		65	70	mA

MC100E310 PECL DC CHARACTERISTICS

			–40°C			0°C			25°C			85°C		
Symbol	Characteristic	Min	Тур	Max	Unit									
VOH	Output HIGH Voltage (Note 1.)	3.915	3.995	4.12	3.975	4.045	4.12	3.975	4.045	4.12	3.975	4.045	4.12	V
V _{OL}	Output LOW Voltage (Note 1.)	3.170	3.305	3.445	3.19	3.295	3.38	3.19	3.295	3.38	3.19	3.295	3.38	V
VIH	Input HIGH Voltage (Note 1.)	3.835		4.12	3.835		4.12	3.835		4.12	3.835		4.12	V
V _{IL}	Input LOW Voltage (Note 1.)	3.190		3.525	3.190		3.525	3.190		3.525	3.190		3.525	V
V _{BB}	Output Reference Voltage (Note 1.)	3.62		3.74	3.62		3.74	3.62		3.74	3.62		3.74	V
VCC	Power Supply Voltage	4.75		5.25	4.75		5.25	4.75		5.25	4.75		5.25	V
lн	Input HIGH Current			150			150			150			150	μΑ
IEE	Power Supply Current		55	60		55	60		55	60		65	70	mA

^{1.} These values are for V_{CC} = 5.0 V. Level Specifications will vary 1:1 with V_{CC} .

AC CHARACTERISTICS V_{CCx} = 5.0 V; V_{EE} = 0.0 V or V_{CCx} = 0.0 V; V_{EE} = -5.0 V (Note 1)

			–40°C			25°C			85°C		
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
fMAX	Maximum Toggle Frequency		TBD			TBD			TBD		GHz
^t PLH ^t PHL	Propagation Delay to Output IN (differential) (Note 2.) IN (single–ended) (Note 3.)	525 500		725 750	550 550		750 800	575 600		775 850	ps
^t skew	Within–Device Skew (Note 4.) Part–to–Part Skew (Diff)			75 250			50 200			50 200	ps
^t JITTER	Cycle-to-Cycle Jitter		TBD			TBD			TBD		ps
V_{PP}	Minimum Input Swing (Note 5.)	500			500			500			mV
t _r /t _f	Output Rise/Fall Time (20%–80%)	200		600	200		600	200		600	ps

V_{EE} can vary +0.46 V / -0.8 V.
 The differential propagation delay is defined as the delay from the crossing points of the differential input signals to the crossing point of the differential output signals. See Definitions and Testing of ECLinPS AC Parameters in Chapter 1 (page 1-12) of the ON Semiconductor High Performance ECL Data Book (DL140/D).

^{3.} The single-ended propagation delay is defined as the delay from the 50% point of the input signal to the 50% point of the output signal. See Definitions and Testing of ECLinPS AC Parameters in Chapter 1 (page 1-12) of the ON Semiconductor High Performance ECL Data Book (DL140/D).

^{4.} The within-device skew is defined as the worst case difference between any two similar delay paths within a single device.

^{5.} Vpp(min) is defined as the minimum input differential voltage which will cause no increase in the propagation delay. The Vpp(min) is AC limited for the E310 as a differential input as low as 50 mV will still produce full ECL levels at the output.

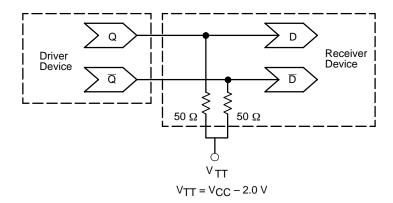


Figure 1. Typical Termination for Output Driver and Device Evaluation (See Application Note AND8020 – Termination of ECL Logic Devices.)

Resource Reference of Application Notes

AN1404 – ECLinPS Circuit Performance at Non–Standard VIH Levels

AN1405 – ECL Clock Distribution Techniques

AN1406 – Designing with PECL (ECL at +5.0 V)

AN1503 - ECLinPS I/O SPICE Modeling Kit

AN1504 – Metastability and the ECLinPS Family

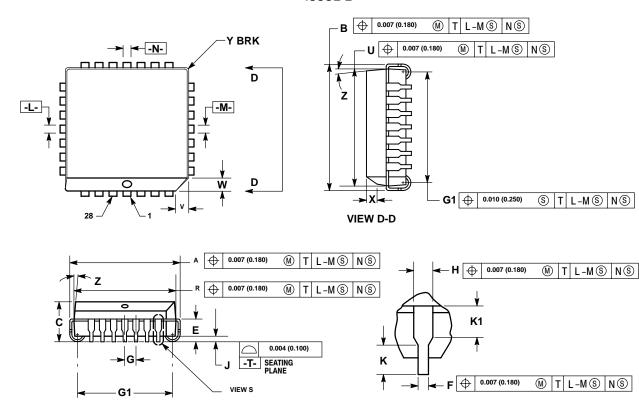
AN1568 - Interfacing Between LVDS and ECL

AN1596 – ECLinPS Lite Translator ELT Family SPICE I/O Model Kit

AN1650 – Using Wire-OR Ties in ECLinPS Designs

AN1672 – The ECL Translator Guide

AND8001 – Odd Number Counters Design


AND8002 – Marking and Date Codes

AND8020 - Termination of ECL Logic Devices

PACKAGE DIMENSIONS

PLCC-28 FN SUFFIX

PLASTIC PLCC PACKAGE CASE 776–02 ISSUE E

NOTES:

⑤ |T | L-M ⑤ | N ⑤

0.010 (0.250)

- DATUMS -L-, -M-, AND -N- DETERMINED
 WHERE TOP OF LEAD SHOULDER EXITS
 PLASTIC BODY AT MOLD PARTING LINE
- PLASTIC BODY AT MOLD PARTING LINE.

 2. DIM G1, TRUE POSITION TO BE MEASURED
- AT DATUM -T-, SEATING PLANE.

 3. DIM R AND U DO NOT INCLUDE MOLD FLASH.
 ALLOWABLE MOLD FLASH IS 0.010 (0.250)
 PER SIDE
- DIMENSIONING AND TOLERANCING PER ANSI
 Y14.5M. 1982.
- Y14.5M, 1982. 5. CONTROLLING DIMENSION: INCH.
- 6. THE PACKAGE TOP MAY BE SMALLER THAN THE PACKAGE BOTTOM BY UP TO 0.012 (0.300). DIMENSIONS R AND U ARE DETERMINED AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY EXCLUSIVE OF MOLD FLASH, TIE BAR BURRS, GATE BURRS AND INTERLEAD FLASH, BUT INCLUDING ANY MISMATCH BETWEEN THE TOP AND BOTTOM OF THE PLASTIC BRODY.
- PLASTIC BODY.

 DIMENSION H DOES NOT INCLUDE DAMBAR PROTRUSION OR INTRUSION. THE DAMBAR PROTRUSION(S) SHALL NOT CAUSE THE H DIMENSION TO BE GREATER THAN 0.037 (0.940). THE DAMBAR INTRUSION(S) SHALL NOT CAUSE THE H DIMENSION TO BE SMALLER THAN 0.025 (0.635).

	INC	HES	MILLIN	METERS	
DIM	MIN	MAX	MIN	MAX	
Α	0.485	0.495	12.32	12.57	
В	0.485	0.495	12.32	12.57	
С	0.165	0.180	4.20	4.57	
Е	0.090	0.110	2.29	2.79	
F	0.013	0.019	0.33	0.48	
G	0.05	0 BSC	1.27	BSC	
Н	0.026	0.032	0.66	0.81	
J	0.020		0.51	_	
K	0.025	_	0.64	_	
R	0.450	0.456	11.43	11.58	
U	0.450	0.456	11.43	11.58	
٧	0.042	0.048	1.07	1.21	
W	0.042	0.048	1.07	1.21	
Х	0.042	0.056	1.07	1.42	
Y	_	0.020	_	0.50	
Z	2°	10°	2°	10°	
G1	0.410	0.430	10.42	10.92	
K1	0.040	_	1.02	_	

VIEW S

Notes

ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

PUBLICATION ORDERING INFORMATION

Literature Fulfillment:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada **Fax:** 303–675–2176 or 800–344–3867 Toll Free USA/Canada

Email: ONlit@hibbertco.com

N. American Technical Support: 800–282–9855 Toll Free USA/Canada

JAPAN: ON Semiconductor, Japan Customer Focus Center 4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–0031

Phone: 81–3–5740–2700 Email: r14525@onsemi.com

ON Semiconductor Website: http://onsemi.com

For additional information, please contact your local

Sales Representative.